What is a heat exchanger?
Suppose you have a gas central heating
furnace (boiler) that heats hot-water radiators in various rooms in your home.
It works by burning natural gas, making a line or grid of hot gas jets that
fire upward over water flowing through a network of pipes. As the water pumps
through the pipes, it absorbs the heat energy and heats up. This arrangement is
what we mean by a heat exchanger: the gas jets cool down and the water heats
up.
A heat exchanger is a device that allows heat
from a fluid (a liquid or a gas) to pass to a second fluid (another liquid or
gas) without the two fluids having to mix together or come into direct contact.
If that's not completely clear, consider this. In theory, we could get the heat
from the gas jets just by throwing cold water onto them, but then the flames
would go out! The essential principle of a heat exchanger is that it transfers
the heat without transferring the fluid that carries the heat.
What are heat exchangers used for?
Geothermal pool heat exchanger.
You can see heat exchangers in all kinds of
places, usually working to heat or cool buildings or helping engines and
machines to work more efficiently. Refrigerators and air
conditioning coils, for example, use heat exchangers in the opposite
way from central heating systems: they remove heat from a compartment or room
where it's not wanted and pump it away in a fluid to some other place where it
can be dumped out of the way.
Photo: A heat pump extracts heat from a
natural geothermal hot spring, used to heat buildings at Hot Springs Lodge and
Pool in Glenwood Springs, Colorado. The exchanger is the algae-covered plate
full of copper tubes in the center of the water. Photo by Warren Gretz courtesy
of US DOE/NREL (Department of Energy/National Renewable Energy Laboratory).
In power plants or engines, exhaust gases
often contain heat that's heading uselessly away into the open air. That's a
waste of energy and something a heat exchanger can certainly reduce (though not
eliminate entirely—some heat is always going to be lost). The way to solve this
problem is with heat exchangers positioned inside the exhaust tail pipes or
smokestacks. As the hot exhaust gases drift upward, they brush past copper fins
with water flowing through them. The water carries the heat away, back into the
plant. There, it might be recycled directly, maybe warming the cold gases that
feed into the engine or furnace, saving the energy that would otherwise be
needed to heat them up. Or it could be put to some other good use, for example,
heating an office near the smokestack.
In buses, fluid used to cool down the diesel
engine is often passed through a heat exchanger and the heat it reclaims is
used to warm cold air from outside that is pumped up from the floor of the
passenger compartment. That saves the need for having additional, wasteful
electric heaters inside the bus. A car radiator is another kind of heat
exchanger. Water that cools the engine flows through the radiator, which has
lots of parallel, aluminum fins open to the air. As the car drives along, cold
air blowing past the radiator removes some of the heat, cooling the water and
heating the air and keeping the engine working efficiently. The radiator's
waste heat is used to heat the passenger compartment, just like on a bus.
If you have an energy-efficient shower, it
might have a heat exchanger installed in the wastewater outlet. As the water
drips past your body and down the plug, it runs through the heat
exchanger coils. Meanwhile, cold water that's feeding into the shower
to be heated pumps up past the same coils, not mixing with the dirty water but
picking up some of its waste heat and warming slightly—so the shower doesn't
need to heat it so much.
评论
发表评论